Source code for regparse.esri_feature

"""
An ESRI feature "parser" (really the  requests library does most of the actual parsing).

Most of the utility functions are exposed but most applications won't use them
:func:make_node is generally the only point of interest here.
"""
import requests, metadata

[docs]def make_grid_col( **kw ): """ Generate a RAMP compliant datagrid column object with the following defaults: fieldName '' isSortable False sortType 'string' alignment 0 :param kw: Takes keyword arguments and just fills in the defaults :returns: dict -- a dictionary with the defaults applied """ d = { 'fieldName':'', 'orderable':False, 'type':'string', 'alignment':0 } d.update(kw) return d
[docs]def make_extent( json_data ): """ Extracts the extent for the layer from ESRI's JSON config. :param json_data: A dictionary containing scraped data from an ESRI feature service endpoint :type json_data: dict :returns: dict -- A dictionary with the same data as the ESRI layerExtent node """ return json_data['extent']
[docs]def make_data_grid( json_data ): """ Generate a RAMP datagrid by walking through the attributes. Iterates over all entries in *fields* that do not have a type of *esriFieldTypeGeometry* :param json_data: A dictionary containing scraped data from an ESRI feature service endpoint :type json_data: dict :returns: dict -- A dictionary with a single entry *gridColumns* containing an array of datagrid objects """ g = [] g.append( make_grid_col(id="iconCol", width="50px", title="Icon", columnTemplate="graphic_icon") ) g.append( make_grid_col(id="detailsCol", width="60px", title="Details", columnTemplate="details_button") ) g.extend( [ make_grid_col(id=attrib['name'], fieldName=attrib['name'], width="400px", orderable=True, alignment=1, title=attrib['name'], columnTemplate="unformatted_grid_value") for attrib in json_data['fields'] if attrib['type'] != 'esriFieldTypeGeometry' ] ) return { 'gridColumns':g }
[docs]def get_legend_url( feature_service_url ): """ Converts a feature service URL into a legend request. Handles the optional '/' at the end of requests. :param feature_service_url: A URL pointing to an ESRI feature service :type feature_service_url: str :returns: str -- A URL pointing to a legend request """ if feature_service_url.endswith('/'): feature_service_url = feature_service_url[:-1] return feature_service_url[:feature_service_url.rfind('/')] + '/legend?f=json'
[docs]def get_legend_mapping( data, layer_id ): """ Generates a mapping of layer labels to image data URLs. :param data: The initial payload to RCS (should contain a 'service_url' entry) :type data: dict :param layer_id: The id of the layer to create the mapping for. :returns: dict -- a mapping of 'label' => 'data URI encoded image' """ legend_json = requests.get( get_legend_url( data['service_url'] ) ).json() for layer in legend_json['layers']: if layer['layerId'] == layer_id: break return { x['label']:'data:'+x['contentType']+';base64,'+x['imageData'] for x in layer['legend'] }
[docs]def make_alias_mapping( json_data ): """ Generates a mapping of field names to field aliases. :param json_data: An array of field objects, taken from the fields property of an ESRI feature service endpoint :type json_data: list :returns: dict -- a mapping of 'name' => 'alias' """ return { x['name']:x['alias'] for x in json_data }
[docs]def make_symbology( json_data, data ): """ Generates a symbology node for the RAMP configuration. Handles simple, unique value and class break renders; prefetches all symbology images. :param json_data: A dictionary containing scraped data from an ESRI feature service endpoint :type json_data: dict :param data: The initial payload to RCS (should contain a 'service_url' entry) :type data: dict :returns: dict -- a symbology node """ render_json = json_data['drawingInfo']['renderer'] symb = { 'type':render_json['type'] } label_map = get_legend_mapping( data, json_data['id'] ) if render_json['type'] == 'simple': symb['imageUrl'] = label_map[render_json['label']] symb['label'] = render_json['label'] elif render_json['type'] == 'uniqueValue': if render_json.get('defaultLabel',None) and render_json['defaultLabel'] in label_map: symb['defaultImageUrl'] = label_map[render_json['defaultLabel']] symb['label'] = render_json['defaultLabel'] for field in 'field1 field2 field3'.split(): symb[field] = render_json[field] val_maps = [ dict( value= u['value'], imageUrl= label_map[u['label']], label= u['label'] ) for u in render_json['uniqueValueInfos'] ] symb['valueMaps'] = val_maps elif render_json['type'] == 'classBreaks': if render_json.get('defaultLabel',None) and render_json['defaultLabel'] in label_map: symb['defaultImageUrl'] = label_map[render_json['defaultLabel']] symb['label'] = render_json['defaultLabel'] symb['field'] = render_json['field'] symb['minValue'] = render_json['minValue'] range_maps = [ dict(maxValue=u['classMaxValue'], imageUrl=label_map[u['label']], label= u['label'] ) for u in render_json['classBreakInfos'] ] symb['rangeMaps'] = range_maps return symb
[docs]def make_node( data, id, config ): """ Generate a RAMP layer entry for an ESRI feature service. :param data: The initial payload to RCS (should contain a 'service_url' entry) :type data: dict :param id: An identifier for the layer (as this is unique it is generally supplied from :module:rcs ) :type id: str :returns: dict -- a RAMP configuration fragment representing the ESRI layer """ node = { 'id': id } r = requests.get( data['service_url'] + '?f=json' ) svc_data = r.json() node['url'] = data['service_url'] node['displayName'] = data.get('service_name',None) node['nameField'] = data.get('display_field',None) if node.get('displayName',None) is None: node['displayName'] = svc_data['name'] if node.get('nameField',None) is None: node['nameField'] = svc_data['displayField'] metadata_url, catalogue_url = metadata.get_url( data, config ) if metadata_url: node['metadataUrl'] = metadata_url node['catalogueUrl'] = catalogue_url node['minScale'] = svc_data.get('minScale',0) node['maxScale'] = svc_data.get('maxScale',0) node['datagrid'] = make_data_grid( svc_data ) node['layerExtent'] = make_extent( svc_data ) node['symbology'] = make_symbology( svc_data, data ) node['aliasMap'] = make_alias_mapping( svc_data['fields'] ) node['maxAllowableOffset'] = data.get('maxAllowableOffset', 0) return node